翻訳と辞書
Words near each other
・ Bind tribe
・ Bind Us Together
・ Bind, Torture, Kill
・ BIND-014
・ Binda
・ Binda (disambiguation)
・ Binda Group
・ Binda, New South Wales
・ Bindaas
・ Binary form (disambiguation)
・ Binary Format Description language
・ Binary function
・ Binary game
・ Binary GCD algorithm
・ Binary Golay code
Binary Goppa code
・ Binary Hammer
・ Binary hardening
・ Binary heap
・ Binary icosahedral group
・ Binary image
・ Binary Independence Model
・ Binary Integer Decimal
・ Binary lambda calculus
・ Binary Land
・ Binary large object
・ Binary liquid
・ Binary logarithm
・ Binary logic
・ Binary matroid


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Binary Goppa code : ウィキペディア英語版
Binary Goppa code
In mathematics and computer science, the binary Goppa code is an error-correcting code that belongs to the class of general Goppa codes originally described by Valerii Denisovich Goppa, but the binary structure gives it several mathematical advantages over non-binary variants, also providing a better fit for common usage in computers and telecommunication. Binary Goppa codes have interesting properties suitable for cryptography in McEliece-like cryptosystems and similar setups.
==Construction and properties==

A binary Goppa code is defined by a polynomial g(x) of degree t over a finite field GF(2^m) without multiple zeros, and a sequence L of n distinct elements from GF(2^m) that aren't roots of the polynomial:
: \forall i,j \in \: L_i \in GF(2^m) \and L_i \neq L_j \and g(L_i) \neq 0
Codewords belong to the kernel of syndrome function, forming a subspace of \^n:
: \Gamma(g,L)=\left\^ \frac \equiv 0 \mod g(x) \right\}
Code defined by a tuple (g,L) has minimum distance 2t+1, thus it can correct t=\left\lfloor \frac \right\rfloor errors in a word of size n-mt using codewords of size n. It also possesses a convenient parity-check matrix H in form
:
H=VD=\begin
1 & 1 & 1 & \cdots & 1\\
L_0^1 & L_1^1 & L_2^1 & \cdots & L_^1\\
L_0^2 & L_1^2 & L_2^2 & \cdots & L_^2\\
\vdots & \vdots & \vdots & \ddots & \vdots \\
L_0^t & L_1^t & L_2^t & \cdots & L_^t
\end
\begin
\frac & & & & \\
& \frac & & & \\
& & \frac & & \\
& & & \ddots & \\
& & & & \frac
\end

Note that this form of the parity-check matrix, being composed of a Vandermonde matrix V and diagonal matrix D, shares the form with check matrices of alternant codes, thus alternant decoders can be used on this form. Such decoders usually provide only limited error-correcting capability (in most cases t/2).
For practical purposes, parity-check matrix of a binary Goppa code is usually converted to a more computer-friendly binary form by a trace construction, that converts the t-by-n matrix over GF(2^m) to a mt-by-n binary matrix by writing polynomial cofficients of GF(2^m) elements on m successive rows.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Binary Goppa code」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.